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This paper investigates the decay of correlations in a large class of non-Markov 
one-dimensional expanding maps. The method employed is a special version of 
a general approach recently proposed by the author. Explicit bounds on the rate 
of decay of correlations are obtained. 
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INTRODUCTION 

In this paper  we apply  a new t echn ique - - in t roduced  in ref. 15 to s tudy the 
decay of correlat ions in hyperbol ic  sy s t ems - - t o  one-dimensional  non- 
M a r k o v  expansive maps  (see Section 2 for a precise definition). A main 
feature of such a method  is the possibi l i ty of obta in ing explicit bounds  on 
the rate of decay. 

The s tandard  approach  to this p roblem 2 is to s tudy the P e r r o n -  
Froben ius  ( P F )  opera to r  via Ionescu-Tulcea and Mar inescu- type  spectral  
theorems. ~4) Unfor tunate ly ,  this suffices to prove exponent ia l  decay of 
correlat ions,  but  does not  provide  any construct ive bound  on the rate of 
decay. One can hope to ob ta in  some bounds  using the theory of Ruelle zeta 
functions, C~7 191 but  it is not  clear of the generali ty in which this can be 
accomplished.  

Here,  we will s tudy the P F  opera to r  as well, but  from a different point  
of view: we will see that  there exists a convex cone of functions that  is 
mapped  "strictly." inside itself by the P F  operator .  We will then be able to 
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take advantage of an idea by Garrett  Birkhoff: he showed that one can 
associate a Hilbert metric to the above-mentioned cone and that such a 
metric is contracted by the PF operator. Once we obtain a contraction all 
the wanted consequences are the result of straightforward arguments. This 
will allow us to obtain an explicit bound for the rate of decay. 

While several bounds on the rate of decay are available for smooth 
(or, more generally, Markov)  expanding maps, 17" 20. 12) very little is known 
in the discontinuous case (more precisely, in the non-Markov case). 

The possibility to obtain bounds on the rate of decay for non-Markov 
maps was recently investigated by Collet. ~61 He used techniques developed 
for the study of Markov chains. 15) Here we show that the approach 
proposed in ref. 15 is more direct and produces substantially better bounds 
for the class of maps studied in ref. 6, and we apply it to a larger class of 
maps. 

If T is a map of the type under consideration (see Section 2) and/~ is 
the associated invariant probability measure, absolutely continuous with 
respect to the Lebesgue measure (i.e., there exists ~b ~ L'(E0, 1 ]) such that 
d# = ~b dx), then I prove the following: 

T h e o r e m  0.1. If inl~,.~Eo.~l~(x)>~?>0 and the system (T,p) is 
mixing, then there exists b, K >  0, A ~ (0, 1 ), "constructive in T," such that, 
for each function f E L ~ ( [ 0 ,  1]) and geBV (the space of functions of 
bounded variation), ~ g = 1, 

1 

In addition, it is possible to state a concrete and verifiable condition 
that ensures i n f ~ > ?  > 0  and shows that it is a rather general feature of 
expanding maps (see Lemma 4.2). Of course, the novelty of Theorem 0.1 
consists in "constructive in T," which means that, given T, it is possible to 
state explicit, although involved, formulas for b, K, and A. Such formulas 
are summarized for the reader's convenience in Appendix A. I do not claim 
that the explicit b, K, and A that I produce here are optimal (in fact, I 
believe they are not); more work in this direction is called for. Lastly, 
it may be interesting to notice that the bounds are robust: they vary 
continuously in the C 2 topology. 

The paper is organized as follows: In Section 1, I provide a brief review 
of some basic facts on which the subsequent arguments rest. Section 2 
contains a detailed description of the class of maps under consideration 
and it presents the main ingredient in the proof of Theorem 0.1: a cone of 
functions invariant under the action of the Perron-Frobenius operator. 
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In Section 3 the bound  on the decay of correlat ions is proven,  but  under  
apparen t ly  s t ronger  hypotheses  than the ones in the s ta tement  of 
Theorem 0.1. In Section 4, I show that  the hypotheses of Theorem 0.1 
imply the assumpt ions  used in Section 3, thereby concluding the argument.  
As a byproduct ,  I also answer some quest ions concerning general proper-  
ties of expanding  maps  recently raised by Collet. c61 Final ly,  the paper  
includes two appendices;  in the first I summarize  the formulas for the con- 
stants b, K, and A and discuss a concrete example,  obta in ing numerical  
values for such constants  ( thereby emphasizing the constructive nature  of 
the present  approach) .  In  the second I prove a helpful inequality. 3 

1. O P E R A T O R S  A N D  I N V A R I A N T  C O N V E X  C O N E S  

This section il lustrates some results in lattice theory originally due to 
Birkhoff. t4~ More  details  and the proofs of the following results can be 
found in ref. 15. 

Consider  a topological  vector space V, with a par t ia l  order ing " ~ , "  
that  is a vector  lattice. 4 We require the par t ia l  order  to be "cont inuous,"  
i.e., given { f .  } E V, lim,, ~ ~o f .  = f ,  if f .  ~ g for each n, then f ~ g. We call 
such vector lattices "integral ly closed. ' 's 

We define the closed convex cone 6 i f =  { f e V  ] f ~ O , / ~ 0 }  (here- 
after, the term "closed cone" c.g will mean that  cgw {0} is closed), and the 
equivalence relat ion " ~ " :  f..~g iff there exists 2 e R + \{0}  such that  f =  2g. 
If we call c~ the quot ient  of cff with respect to ~ ,  then ~ is a closed convex 
set. Conversely,  given a closed convex cone cg ~ V enjoying the p roper ty  
cg n - c g  = ~ ,  we can define an order  relat ion by 

f ~g.cz, g - f  ec~u {O} 

Henceforth,  each time that  we specify a convex cone we will assume the 
corresponding order  relat ion and vice versa. 

s The inequality is far from new. I prove it for the convenience of the reader, because the form 
I use is slightly nonstandard. 

4 We are assuming the partial order to be well behaved with respect to the algebraic structure: 
for each f, g~/, .f~g.~f-g~O; for each f~V,  2ER+\{0}, f ~ 0 ~ 3 . f ~ 0 ;  for each 
fe  V, f~O and f ~ 0  imply f = 0  (antisymmetry of the order relation). 

5 To be precise, in the literature "integrally closed" is used in a weaker sense. First, V does 
not need a topology. Second, it suffices that for {~,}e~, ~,--*~;.f, g~V, if a,,f~g, then 
~f~g. Here we will ignore these and other subtleties: our task is limited to a brief account 
of the results relevant to the present context. 

6 Here, by "cone" we mean any set such that, i f f  belongs to the set, then )fbelongs to it as 
well, for each 2 > 0. 



1114 Liverani 

It is then possible to define a projective metric O (Hilbert metric) 7 in 
cg by the construction 

~(f,  g ) = s u p { ~ R  + 12f~g} 

fl(f, g ) = i n f { #  ~ R +  I g~#f}  

F /i, g)] 
O(f ,  g) -- log [_~(--T~, g)d 

where we take ~ = 0 and fl = 0 if the corresponding sets are empty. 
The importance of the previous constructions is due, in our context, to 

the following theorem. 

T h e o r e m  1.1.  Let ~/1 and V2 be two integrally closed vector lat- 
tices, and T: ~/~ ~ V 2 a linear map such that T(~gj) ccg_, for the two corre- 
sponding closed convex cones cg l c V~ and ~2 c V 2. Let Or be the Hilbert 
metric corresponding to the cone cg i. Setting ,4 =supr .g  ~ rt,r g), we 
have 

02(Tf, Tg)<~tanh(A)o,(f,g), 

[tanh(o0 ) = 1 ]. 

Vf, g~% 

R e m a r k  1.2.  If T(% ) c cg2, then it follows that 02(Tf, Tg) <~ O l(f, g). 
However, a uniform rate of contract ion depends on the diameter of the 
image being finite. 

In particular, if an operator maps a convex cone strictly inside 
itself (in the sense that the diameter of the image is finite), then it is 
a contraction in the Hilbert metric. This implies the existence of a 
"positive" eigenfunction (provided the cone is complete with respect to the 
Hilbert metric), and, with some additional work, the existence of a gap 
in the spectrum of T (see ref. 3 for details). The relevance of this 
theorem for the study of invariant measures and their ergodic properties is 
obvious. 

It is natural to wonder about  the strength of  the Hilbert metric 
compared to other, more usual, metrics. While in general the answer 
depends on the cone, it is nevertheless possible to state an interesting 
result. 

In fact, we define a semimetric, since f~g~ O(f, g)=0. The metric that we describe 
corresponds to the conventional Hilbert metric on ~. 
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L e m m a  1.3.  Let I1.11 be a norm on the vector lattice V, and 
suppose that, for each f ,  g s V, 

- f ~ g ~ f ~  Ilfll/> Ilgll 

Then, given f ,  g e ff c V for which Ilfll = II gll, 

[ I f - g l l  ~< ( e ~  1)Ilfll  

2. THE M A P  A N D  AN I N V A R I A N T  CONE 

We consider a map  T from the interval [0, 1 ] into itself. 
We assume that there exists a finite part i t ion (mod 0, with respect to 

the Lebesgue measure)  ~r of [0, 1 ] into open intervals such that, for each 
interval I e  do,  the map  T, restricted to L can be extended to a C 2 map  on 
an open interval containing the closure of L In addition, we assume that 
IDTI >/2 > 1 (expansivity). 8 

The simplest examples in this class of maps occur when, for each 
16 do, 7"1 is equal, mod  0, to the union of elements of do.  This case is 
called the " M a r k o v  case," and it is well understood in the literature; in 
particular, explicit bounds on the rate of decay of correlations are 
availablejT. 20, ~2. ~51 If the above-ment ioned proper ty  fails, the map  is called 
"non-Markov" ;  this is the case addressed here. 

Thanks  to the work of Lasota  and Yorke, t~6) it is known that  any 
piecewise smooth  expanding map  has at least one invariant measure 
absolutely continuous with respect to Lebesgue. 9 We will call 4 the density, 
with respect to the Lebesgue measure, of such an invariant measure p, and 
assume that  the dynamical  system (T, #) is mixing. 

The results of refs. 1 and 11 imply that  the class of maps under 
consideration exhibits exponential  decay of correlations. But no explicit 
bound on the rate of decay is available in such a generality. 

A first technical obstacle is that the set { x ~ [ 0 ,  1] I ~ ( x ) = 0 }  may 
have positive Lebesgue measure. This is a concrete possibility and it is very 
easy to construct  examples with this property.  The simplest case of this 
behavior  occurs when there exists an at tracting set; clearly such a set 
supports  all the invariant measures in the class under consideration (i.e., 
measures that are absolutely continuous with respect to the Lebesgue 

s The requirement .d  o finite is not essential, but certainly several more extra conditions on the 
map  should be introduced if ~o is countable. For  example, the condition i n f t~ ,  ~ ITII > 0  is 
necessary for the main inequality (2.1) to make sense and to hold. Moreover,  additional 
hypotheses would be needed to prove Lemma 3.5. 

9 See ref. ! for a generalization of such a result. 

822/78/3-4-29 
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measure).  We will assume that  this is not  the case. In principle, such an 
assumpt ion  does not  imply any loss of generali ty:  we can always s tudy the 
restr ict ion of the map  to an invariant  set. l~ Yet, some more  complex 
si tuat ions may be possible. F o r  example,  ~b(x) :~ 0 for each x E [ 1, 0] ,  but  
inf.,.~ Eo. ~l ~b(x)= 0. As we will see in Lemma 4.1, inf ~b = 0 implies that  some 
sets are visited very seldom; this makes  it much harder  to est imate the rate 
of decay. To avoid such complicat ions ,  let us further reduce the class of 
maps  under considerat ion.  

On one hand,  we assume that  ]DTI/> 2 > 2 (here no loss of generali ty 
is implied: this condi t ion  can always be satisfied replacing T by an 
appropr ia t e  power).  On  the other  hand,  we ask that  there exists y > 0 such 
that  inf,_~ Eo. i] ~b(x) >I ~,. 

To s tudy the decay of correlat ions it is useful to in t roduce the P e r r o n -  
Froben ius  ( P F )  opera to r  T. Such an opera to r  is defined by the relat ion u 

for each f ~ L ~ ( [ 0 ,  1])  and / ~ L ~ ( [ 0 ,  1]). A direct computa t ion  shows 
that  

7"g(x) = ~ g(y) ID,.T]-' 
I,e T - l ( x )  

We will show that  the P F  ope ra to r  leaves invariant  a cone of functions; the 
decay of the correlat ions will then follow from the theory discussed in 
Section 1. 

Let BV be the space of functions of bounded  var ia t ion on [0, 1]. The 
cones that  we will use in this paper  are 

cg= ge g(x)~O;g(x)>~OVxe[O, 1];Vg<~a g 
0 

for a > 0 .  '2 

The main ingredient  for s tudying the maps  under  considera t ion  is the 
following inequali ty (due to Laso ta  and Yorke, 1'6) but  see Appendix  B for 
details):  for each g~ BV, 

1 1 1 

VTg<~22-~Vg+A~o Igl (2.1) 
0 0 

lo In fact, there is nothing sacred about the interval [0, 1 ]. 
u If not otherwise stated, all the integrals are between 0 and 1, and taken with respect to the 

Lebesgue measure. 
lz By V0 l g we mean the variation of the function g in the interval [0, 1]. 
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where 

A = 
I D~ TI 

sup + 2 sup 
r [0, 1] IDeTI 2 ~.~'o 

supe~ z IDe TI - 1 

III 

(,do and  2 are defined at the b eg i n n i n g  of the section).  ~3 The  relevance 
of the cones  ego and  the inequa l i ty  (2.1) is exemplified by the fol lowing 
result. 

L e m m a  2 .1 .  F o r  each a > A/(1 - 2 2 - 1 )  there exists a < 1 such that  

Proof. F o r  each g~Cgo, inequa l i ty  (2.1) yields 

l 1 1 1 

v  g  ,t-lV fo 0 
0 0 

g 

The result  follows by choos ing  a = 2 2 - m + A a  -1 and  not ic ing  that  

Sg=~Tg .  | 

3. D E C A Y  OF C O R R E L A T I O N S  

In  the previous  sect ion we found  a cone  of func t ions  tha t  is left 
i nva r i an t  by the P F  opera tor .  This  it is n o t  qui te  e n o u g h  to ob t a in  a con-  
t rac t ion  in the co r r e s p o n d i n g  Hi lber t  metric:  the d iamete r  of the image 
mus t  also be invest igated.  The  na tu re  of the p r o b l e m  is e luc idated  by the 
fol lowing lemma.  

L e m m a  3.1, Cal l ing  O. the Hi lber t  met r ic  associated to the 
cone (do, for each v < 1 a n d  g E (d,,, 

Vmax{_(_l -I- V)~o 1 g; s u p x ~ ,  11 g(x)}  1 

O.(g, l )  ~< In L rain{(1 - v) So ~ g; inf,.~ Eo. 11 g (x)}  / 

13 The alert reader has certainly noticed that we have defined T only on Lt([0, l J); to define 
it on BV, it is necessary to specify the value of :T"g at all points, that is, also at the 
boundaries of the intervals belonging to the partition ..d o . In fact, we want to define all the 
powers of T as well, so we may be in trouble at countably many points (all the preimages 
of the boundaries of the partition). We will not worry about such points, since they can be 
consistently ignored (loosely speaking, the value of 7"g at such points can be defined by 
taking left and/or right limits--see rcf, l l or ref. 1 for details), 
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Proof. We have to find the set of 2 a n d / t  such that  21 ~ g  ~ # i. Let 
us start with the first inequality: it is satisfied iff g - 2  e ffa, i.e., 

2 ~<g(x) Vx~ [0, 1] 

1 1 

)'<~fO g--a-lVg 0 

Consequently,  

= sup 2 = min inf g(x);  g -  a -  1 g 
(.~-~ [o. 13 o 

See Section 1 for a definition of c~ and fl in the present context. Since 
g e ff,.a, it follows that  

1 1 1 

fo g-a-lVg>~(1-v)fl g 
0 

that  is, ct>.min{(1--v)~g, infg}. Analogously, one can compute  
f l ~ < m a x { ( l + v ) S g ,  s u p g  }. 1 

Note  that, up to now, we do not have any control on the inf of a func- 
tion belonging to our  cones; therefore the above lemma shows not only 
that more  work is needed, but also in which direction to concentrate our 
efforts. 

The first step is to notice that, if a function belongs to the cone c#,, 
then it cannot  be small too often. This is made precise by the following. 

k e m m a  3.2.  Given a partit ion, mod  0, ~ of [0, I ], if each p e ~ is 
a connected interval with Lebesgue measure less than 1/(2a) [ that  is, 
IPt < 1/(2a)],  then, for each geog., there exists p o e ~  such that  

1 

g(x)>>'�89 fo g Vx~po 

Proof. Consider the set 

~_ = { p 6 ~  3Xp 

Clearly the lemma is proven if we show that ~_  4= ~ .  Let us suppose the 
contrary. For  

Ipl f,' +k ;pg<.lpd(g(Xp)+ p o g 2a p g 
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and remembering that  g ~ e.g,, we have 

fo g < ~ f /  g+~ayg~fo g 

which is a contradiction. II 

To  continue, we define a part icular  class of partitions: 

Defini t ion 3.3.  For  each n e  r~, 

.~,, = + T - J d 0  
j = o  

It is immediately clear that  T n + l  is mono tone  and smooth  on each 
element of the part i t ion d ,  (in fact, this could be used as an alternative 
definition of d,,); moreover,  d,, consists of intervals with Lebesgue measure 
smaller than 2 - "  

We can then choose n o such that  all the elements of ~r have measure 
less than 1/(2a) (for example no = [In 2a/ln 2]  + 1 would do). 

D e f i n i t i o n  3.4.  We call a map  "covering" if for each n e  N there 
exists N(n) such that, for each I ~ d . ,  14 

TN(")I = [0, 1 ] 

The above proper ty  corresponds to condition (H2) in ref. 6. The 
importance of the notion of "covering" is emphasized by the following 
lemma. 

L e m m a  3.5.  If the map  T is covering, then for each 
a > A/(1 - 2 2 -  l) there exists d > 0 such that 

diam(~Jv(,,0)cg,) ~< A < 

ProoL Let g ~ c-s then, according to Lemma  3.2, there exists Io ~ ~,,0 
1 i Io. By the covering property,  for each such that  g(x)>>.5S o g for each x e  

14 We have already remarked that what happens at the boundaries of the partitions is 
immaterial. In the same vein, each time that we write an equality between sets we always 
mean it apart from a finite number of points. 
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X ~ [0, 1 ] (apart from at most finitely many points) there exists y e Io such 
that TN~"~ = x; hence 

(TNI"~ = ~, g(Y) ID.,,TN'"~ 
,.~ r-~,-o,.,- 2 IIDTII u!,,ol 

Lemma 2.1 implies 7"N<"~163 c ~,~,o with 15 

1 - ( 2 2  - t )u<,,01 
el = (22-1)N~176 + 1_22_~ Aa -1 

Let 6(g)=(inf 7"N("~ g; Up to now we have seen that 
6(g)>~(2 IIDTIlN~"~ -~ for all g~Cg.. Using Lemma 3.1, we can then 
estimate 

I-max{(1 + a, ) S g; inf ]-m,,Olg + V~ ~.N,,,O,g }-] 
diam (7"N<"o~cga) ~< 2 

g+sup'~o In t m~nT(T ~--~ ~ ~ ~ ' ~ s  _1" 

~< 2 sup In [ max {(1 +-a2); -~(g) + aal )]  
g~e. L min{(1 - g,); 3(g)} J 

[ ____max{(1 -~ GI); 1 -~ aol } 1 
~< 2 In Lmin { ( 1 -  a, ); (2 lID TI ~.~N0'~ -1} 

-~'zJ ! 
A 

The above temma, together with the results of Section 1, implies 
exponential decay of the correlations for covering maps. 

T h e o r e m  3 . 6 .  
1 g~BV, tog=l ,  

I 

oV 4 
with 

If T is covering, then for each f ~ L l ( [ 0 ,  1]) and 

VnEN 

A = tanh (_~) t/N~176 

~STo obtain the following formula, it is enough to notice that, iterating (2.1), for each k>0,  
we have 

' + l--(2J'- ')k f I 1 - -22- '  V ~'kg ~< (2),- I ) k g+  A g 
o o 

Apply then Lemma 2.1 directly to ~,vl,,ol. 
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K,, = {exp[zJA*"- N,,,o))] } A - -  N ( t / 0 ) Z ~  I1~11 o~ 

b = ( a - B )  -1 

[ 8  = A / (  1 - 2 2 -  ')].'6 

Proof. Choose a > A/(1 - 22 -  ~) and consider g ~ ~,  normalized so 
l g  that to = 1 ( i . e . ,  g can be thought of as the density of a measure). Then, 

~ dx I '"g f(7""g-~b) ~< Ilfllt ~ - - 1  I1r ~. ~ u  

L e m m a  3.7.  I f ~ +  = { g ~ B V [  g(x)>~O, Vx~ [0, 1]} and 6~+ is the 
corresponding Hilbert metric, then for each ga, gz ~ r 

O +(gj, gz)<<. O(g~, g2) 

Proof. Since c.g+ ~ e.g,, the identity is a map from BV to itself that 
maps c.g, into cs The result follows then from Theorem 1.1. | 

A simple computat ion yields 

O+(g~,  g z ) = l n  
gl(x)  g2(Y) 

sup 
..... �9 E to. ~1 gt(Y) g2(x) 

Using the previous facts and the trivial equality 

(7""g)(x) 7""g(x) r T"g(y) 

~(x) T"g(y) ~(x) ~(y) 

we have 

7""g(y) l '"g(y) <<. 7""g(x)<~ exp[c9 + (T"g, ~b)] - -  e x p [ - 6 ) + ( T " g ,  ~b)] ~ ~ ~b(y) 

for each x, y 6 [ 0 , 1 ] .  Because ~ol(7""g--~b)=0, there must exist 
Y,,+, Y,7 E [0, 1] such that -"  - T g(y,, )>1 (~(y,+,). Using T g(y,, ) ~< ~b(y,~- ) and ~" + 
the previous inequalities with y = Y,7 and y = y,,+, respectively, we obtain, 
for each x �9 [0, 1 ], 

1""g(x) <~ exp[O + (7""g, ~b)] exp [ - -  O + (T"g, ~b)] ~< ~ - ~ - x )  

16 Note that, since A < 1, lim,,~ ~ K,,=A-~I"~ I[~b[l~ ~<A-UI"~ +a). 
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and 

~ n g  

---~--1 ~ <~ exp[ O + ( 7""g, O ) ] - i ~ exp[ O( 7""g, ~b ) ] - I 

According to Theorem 1.1 and Lemma  3.5, 

O(T"g, ~b) ~ O( [ ~v(,,o)] t,,/m,,o)l g, [ 7"N(,,ol] o,/NI.o)l ~b) 

( 4 )  E'm''~ ' ~< tanh O(7"u~"~ ~b) 

Hence, 

~ - 1 <~ exp[A"-m"~176 - 1 
o3 

~< { e x p [ A " -  Nt"~ ] } AA"-  U(.o~ 

This estimate shows that  for each f e L I([O. 1 ] ). g �9 cg., n e IN, 

Let us now consider g~BV,  g>~O, and So ~ g =  1. If V~ g<~a, we have 
the above estimate; otherwise we define gp=(g+p(~) ( l+p) -~;  then 
~ gp = 1 and 

+gp=[Vo  g + P + ( ~ ] ( I + P ) - t  
0 0 

I terating (2.1), one obtains V~ ~b ~< A/( 1 - 22 - ~ ) = B; then 

go<~ g + p B  ( l + p ) - ~  
0 

Vo~ g - a  p =  
a - B  

Liverani 

f o  T"g dx - f(~ <~ g,, Ilfll i A" 

A = tanh ; K,,= {exp[A"-Nt'~ AA -N('~ II~llo~ 

Choosing 
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we have gp e cga; hence, the decay of correlations for gp implies the decay 
of correlations for g. The result for arbitrary g e B V  follows, since any 
function can be written as the difference of two positive functions. II 

In the next section we will see that, provided inf ~b > 0, all the mixing 
maps are covering, thereby completing the proof of Theorem 0.1. 

4. G E N E R A L  P R O P E R T I E S  OF E X P A N D I N G  M A P S  

In this section we address some questions concerning piecewise 
expanding maps posed by Collet. t6~ We will see that the property that some 
image of any interval covers all C0, 1] is a quite general feature of mixing 
maps. This shows that the results obtained in this paper apply to a wide 
class of maps. 

We start by giving a verifiable criterion for the hypotheses of 
Theorem 0.1. 

D e f i n i t i o n  4.1. We call a map "weakly covering" if there exists 
No e N such that, for each I s Sr 

No 

I,.) T q =  [0, 1] 
j=O 

This is a weaker version of (H1) in reC 6. The next lemma shows that 
weak covering is all that is needed to ensure that the first of the hypotheses 
of Theorem 0.1 holds. 

L e m m a  4.2. If a map is weakly covering, then there exists ? ,>0 
such that inf ~b ~> ~,. 

ProoL A consequence of weak covering and expansivity is that the 
property of being weakly covering does not depend substantially on the 
partition. 

S u b l e m m a  4.3. If a map is weakly covering, then, for each n ~ N, 
there exists No(n)s N such that, for each I t  d , ,  

NO(n) 

U TJI= [0, 1] 
j = 0  

Proof. Let I e s r  then T" is smooth on I; accordingly, IT"II ~>2" III- 
If T ' I  covers an element of Sr then the lemma is proven; if not, since T"I 
is connected, it can intersect at most two elements of ~r so it is naturally 
broken in at most two pieces; let I1 be the larger of the two; clearly, 
II, 1/> ,V' III/Z 
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We can then carry out a recursive argument: consider TII; by con- 
struction it is connected; intersect it with the elements of do;  either it will 
cover one element or it will be divided in at most two subintervals; ca l l /2  
the larger one; consider TI2, and so on. It follows that Ilk l/> (2/2) k - t II~ I, 
which implies that eventually I~ will cover an element of ~r this is all that 
is needed to prove the lemma. | 

By definition, ]'~ = ~; in addition, by Lemma 3.2 there exists Io e sg,, o 
such that if(x) >/1/2 for each x e Io. By Sublemma 4.3, for each x e [0, 1 ] 
there exists j <. No(no) and y ,  e Io such that TJy, = x. Hence, 

f f ( x ) = T J ~ ( x )  = Y'. r189 IIDTIIL ̂ '~176 l 
3, e T - I x  

The main result of this section is contained in the following theorem. 

T h e o r e m  4.4. If an expanding map is mixing and in f4 ,>~ ,>0 ,  
then it is covering. 

ProoL For  each interval I c  [0, 1], define 

Zi(x) = { lo/lI I for x e I 
for x r  

1 Then, Vlo zt~< 2/llI and So Z~ = 1. Given any two intervals I, I ,  the mixing 
property implies 

Consider some n~ e N (to be chosen later); there exists N ,  e N such that, 
for each I, I '  e ~,,,, 

n "} z / T  Zr>~ Vn>~N, 

Choose Ioeo~n~; consider 7""Zzo; from (2.1) it follows that 

t 2 . -  l r i  2 A 
V - ,  T Zto<(22-~)"i~ol+A E (2 " ] ' -1 )  i Z/o~(2/~-')n[-~ol+l_2~-I Jo 0 i = 0  

Let b,. = i n f t ~ d .  III; c h o o s e  N~ t> N .  such that 

2(22 - ,  )~v, ~< A 
b,,~ 1 - 2 2  -1 
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Then, 

1 2 A  
~/ 7""Zto <~ - -  Vn >1 N t 
o 1 - 2 2  -1 

Consider the set .~_={I~:~r x+I :  ~'N'Zlo(X)<'y/4}, and let 
L =  # ~ _  ( #  means the cardinality of a set). 

First of all, for each I+ d,,, there exists y ~ I such that ~"N'X.Io(y ) >t 7/2, 
if not, 

l - ? L 1' 

Ij zITNt'zI~ <2 ~j "Zl=-2 

contrary to our assumptions on Nt. 
Consequently, for each I~9~ , 

which implies 

/ 

8A 
L<~( =Lo  

1 - 2 2 - 1 ) ~ '  

But, if # { T - " x  } ~< Lo, we have 

~,~<~b(x)= ~ (~(y) lO., ,T"l- '  <~Zo Ll~blt~ 2 - "  )'E T-n.~: 

which shows that, for N2 = [In Lo II~l[ ~ ~ ' - l / I n  2] + 1, # { T-N'-x} > Lo. 
Choose n t = N2; since T - " ' x  has at most one point in each element of 

d,,, and # { T - " ' x }  > Lo, it follows that there exists y ~  T-n ix  such that 
y ~ I r  ; hence T"'+N'Io = [0, 1]. 

The statement is then proven by using the same reasoning employed 
in Sublemma 4.3. | 

Summarizing, if a map is weakly covering and mixing, then, in view of 
Lemma 4.2, we have ) ,>0  and, by Theorem 4.4, the map is covering. 
Hence, we can prove the exponential decay of correlations thanks to 
Theorem 3.6. We have proved Theorem 0.1. 
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APPENDIX  A. 

Liverani 

T H E  C O N S T A N T S  A N D  A N  E X A M P L E  

The constants A, K, and b in Theorem 0.1 can be chosen as 

K=eA-mA-N'A(1 +a) 
1 - 22 - I  

b 
A 

Several quantities here must be defined: 2=inf~E0.~l lD~T[ is the 
minimum expansion rate; 

ID~ rl pD~ 77 - '  A =  sup - - + 2  sup supr 
r l~ IDcTI 2 *~0 [II 

is the constant that appears in the main inequality (2.1); 

Z = 2 1 n { [ 3 + ( Z 2 - 1 ) u ' ] (  sup [Dr u*} 
CE[o,]] 

is an estimate of the diameter of the image of the cone. In addition, 

{. .}  
a - - m a x  1, i _ 2 2  -1' 

is the parameter that fixes the choice of the cone. ~7 
The last quantity we need to define is N*. Unfortunately, the choice 

of N* is not so simple. Recall that d,, is the coarser partition, in intervals, 
of [0, 1] such that T "§ is C 2 on each interval; then, for each neN, the 
number N(n) is defined as the smallest integer for which 

TN(")I= [0 ,  1 ]  Vle,~r 
We choose no = [ln 2a/In 2] + 1 and define 

In 2 1} 
N*=max{N(no),[in2_ln2] + 

In Section 4 we give abstract conditions ensuring that, for each n e N, 
N(n) exists finite, but I do not know any general bounds on N(n), so, in 
a concrete example, one must construct the partition d,,0 and iterate its 
elements to find the value of N*. 

~ The reader may have noticed that a is never explicitly chosen in the body of the paper. In 
fact, all the estimates obtained depend on the choice of a; therefore the best strategy would 
be to chose a last by optimizing the bounds. Such an approach would lead to very com- 
plicated formulas; to avoid this here I make some choice, neither the best nor the worst. 
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The above formulas are not the sharpest general bounds that can be 
obtained from the results contained in this paper: they represent a compromise 
between reasonable bounds and reasonable formulas. Nevertheless, it is impor- 
tant to remark that given a specific example, it is possible to improve the 
estimates by following step by step the construction carried out in Section 3. 

To be more concrete, let us look at an example. 

Example .  Consider the piecewise linear map 

19(x_ ) 
1 9 r  x) T ( x ) =  ~ 2 , 9  " 

~,9(1 - x )  

The partition on which T is defined is 

x e (0, ~) 
xE(~,  ~) 
x~(~ ,  ~) 
x~(~ ,  ~) 
x e (  7, 1) 

do = {(0, ~); (-~, !);3 (�89 ~); (~, 7); (~, 1)} 

The map satisfies our  assumptions since [DT[ = 9/2 > 2 and it is easy 
to check that it is covering (remember that, by Lemma 4.2 and 
Theorem 4.4, it suffices to check that T is weakly covering). 

The smaller element of the partition do has size 1/9; accordingly, 
A = 4  [see (2.1)']. The choice of a is subject to the constraint a >  
A/(1 - 2).- 1 ) = 36/5 (see Lemma 2.1 ), while no must satisfy supl ~ ~r III ~< 
1/(2a); it is then immediately clear that we must choose, at least, no = 1. 

The partition d l  is 

d , = { ( 0 , 1 .  , 1. , 11. ,, ,5. _~),_ (~,_ ~);  (~,  ~), (~, ~) ,  (~ ,  ~),...} 

Clearly inf1~.~, [I[ = 2/81. 
All the elements of ~'1 have as image an element of do that it is 

mapped on all [0, 1] apart  for the ones that are mapped on (0, I/9) and 
for (0, 1/27). A direct computa t ion shows that T3(0, 1 /27)= [0, 1] and 
T2(0, 1 /9 )=  [0, 1], so N ( 1 ) =  3. 

If we choose a = 7.25, then al ~< 0.994 (see Lemma 3.5 for a definition 
• (_2,~3 of al). '8 Since aal >~ 1 + a l  and 1 - a l  >/,_~gJ , the formula in the proof  of 

Lemma 3.5 yields 

d 
-~< ln[1 + 2aal [IDTII N(II] ~< In 1314 

~8 Note that the general formulas at the beginning of the section would lead to the choice 
a= 72/5 and n o = 3. Since N(3)= 5, it would follow that A ~< 1 -  1/14000; we will see that 
a more careful approach can improve the estimate by almost two orders of magnitude. 
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[ Z l \  1/3 2 -~J/2 1 
A = tanh ( j )  ,~ 1 - ~ e  ~< 1 - 197----- ~ 

Moreover, lim . . . .  K,, ~< 140 and b ~< 0.3. 
The above estimates are probably off by a couple of orders of 

magnitude, but they should not be considered too unsatisfactory: using the 
only other known rigorous estimates, 16~ one would have been led to con- 
sider at least N(20) obtaining an estimate of ( 1 - A )  - j  wrong by at least 
20 orders of magnitude. In addition, the present estimate can certainly be 
improved: first of all it is easy to check that for each x e [0, 1 ], we have 
#{T-3x}~>2;  this allows us immediately to divide by two the number 
inside the log (cf. the proof of Lemma 3.5); second, some advantages can 
be obtained by using a different partition (instead of the dynamical one) 
and a different number (instead of 1/2) in Lemma 3.2.19 Moreover, the 
result can conceivably be improved by choosing a cone of functions better 
adapted to the particular example at hand. 

However, the problem of finding optimal bounds it is a business all in 
itself and not the one we have been concerned with in this paper. 

APPENDIX B. THE MAIN INEQUALITY 

Given IE .~r I =  I-a(/), b(I)], and letting Zz be the characteristic func- 
tion of I, we have 

I 

V 7"gzz = V g IDTI -t + Ig(a(I))l lOam TI -~ + Ig(b(I))l IO~lz~ TI -~ 
0 1 

< VglDrl-'+suplD Tl-'(yg+2inflg( )l), 
~ < 2 2 - ~ y g + ( s u p  ID~TI 2 

Since V~ Tg~< ' (2.1) "~- ~-"~-/E-~0 V o  TgxI, inequality follows. 

19 Using these two ideas (i.e., the partition {(0, 1/9); (1/9, 2/9); (2/9, 3/9);...} and 7/36 instead 
of 1/2, which allows us to set no=0),  it is already possible to obtain the improved estimate 
A ~< 1 - 1/377. 
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